
The Shell
EOAS Software Carpentry Workshop

September 22nd, 2015



Getting Started

You need to download some files to follow this lesson. These files
are found on the shell lesson website (see etherpad)

1. Make a new folder in your Desktop called shell-novice.

2. Download shell-novice-data.zip and move the file to this
folder.

3. If it’s not unzipped yet, double-click on it to unzip it. You
should end up with a new folder called workshop.



Introduction

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2. Explain when and why command-line interfaces should be
used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

• Automate repetitive tasks

• Reproducibility



Introduction

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2. Explain when and why command-line interfaces should be
used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

• Automate repetitive tasks

• Reproducibility



Introduction

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2. Explain when and why command-line interfaces should be
used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

• Automate repetitive tasks

• Reproducibility



Introduction

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2. Explain when and why command-line interfaces should be
used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

• Automate repetitive tasks

• Reproducibility



Introduction

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2. Explain when and why command-line interfaces should be
used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

• Automate repetitive tasks

• Reproducibility



Files and Directories
Learning Goals

1. Explain the similarities and differences between a file and a directory.

2. Translate an absolute path into a relative path and vice versa.

3. Construct absolute and relative paths that identify specific files and
directories.

4. Explain the steps in the shell’s read-run-print cycle.

5. Identify actual command, flags, and filenames in command-line call.

6. Demonstrate the use of tab completion, and explain its advantages.

Sample Code

• whoami

• pwd

• /

• ls

• ls -F

• ls -F data

• ls -F /data

• cd data

• cd ..

• ls -F -a

• ls north-pacific-
gyre/2012-07-03

• ls no tab



Exercise

If pwd displays /users/backup, and -r tells ls to display things
in reverse order, what command will display:
pnas sub/ pnas final/ original/

1. ls pwd

2. ls -r -F

3. ls -r -F /users/backup

4. Either #2 or #3 above, but not #1.



Exercise

If pwd displays /users/backup, and -r tells ls to display things
in reverse order, what command will display:
pnas sub/ pnas final/ original/

1. ls pwd

2. ls -r -F

3. ls -r -F /users/backup

4. Either #2 or #3 above, but not #1.



Creating Things
Learning Goals

1. Create a directory hierarchy that matches a given diagram.

2. Create files in that hierarchy using an editor or by copying and
renaming existing files.

3. Display the contents of a directory using the command line.

4. Delete specified files and/or directories.

Sample Code

• mkdir thesis

• cd thesis

• nano draft.txt

• rm draft.txt

• rm thesis

• rmdir thesis

• rm -r thesis

• mv thesis/draft.txt
thesis/quotes.txt

• mv thesis/quotes.txt .

• cp quotes.txt
thesis/quotations.txt



Exercise

Jamie is working on a project and she sees that her files arent very
well organized:

$ ls -F

analyzed/ fructose.dat raw/ sucrose.dat

The fructose.dat and sucrose.dat files contain output from her
data analysis. What command(s) could you run so that the
commands below will produce the output shown?

$ ls

analyzed raw

$ ls analyzed

fructose.dat sucrose.dat



Exercise
Jamie is working on a project and she sees that her files arent very
well organized:

$ ls -F

analyzed/ fructose.dat raw/ sucrose.dat

The fructose.dat and sucrose.dat files contain output from her
data analysis. What command(s) could you run so that the
commands below will produce the output shown?

$ ls

analyzed raw

$ ls analyzed

fructose.dat sucrose.dat

Solution

$ mv fructose.dat analyzed/fructose.dat

$ mv sucrose.dat analyzed/sucrose.dat



Pipes and Filters
Learning Goals

1. Redirect a command’s output to a file.

2. Process a file instead of keyboard input using redirection.

3. Construct command pipelines with two or more stages.

4. Explain what usually happens if a program or pipeline isn’t given
any input to process.

5. Explain Unix’s ”small pieces, loosely joined” philosophy.

• cd molecules

• wc *.pdb

• wc -l

• wc -l *.pdb > lengths

• cat lengths

• sort lengths

• sort lengths > sorted-lengths

• head -1 sorted-lengths

• sort lengths | head -1

• wc -l *.txt

• wc -l *.txt | sort | head -5

• ls *Z.txt



Exercise

In our current directory, we want to find the 3 files which have the
least number of lines. Which command listed below would work?

1. wc -l * > sort -n > head -3

2. wc -l * | sort -n | head 1-3

3. wc -l * | head -3 | sort -n

4. wc -l * | sort -n | head -3



Exercise

In our current directory, we want to find the 3 files which have the
least number of lines. Which command listed below would work?

1. wc -l * > sort -n > head -3

2. wc -l * | sort -n | head 1-3

3. wc -l * | head -3 | sort -n

4. wc -l * | sort -n | head -3



Loops

https://xkcd.com/1411/



Loops

• Write a loop that applies one or more commands separately to
each file in a set of files.

• Trace the values taken on by a loop variable during execution
of the loop.

• Explain the difference between a variable’s name and its value.

• Explain why spaces and some punctuation characters
shouldn’t be used in file names.

• Demonstrate how to see what commands have recently been
executed.

• Re-run recently executed commands without retyping them.



Variables in loops

Suppose that ls initially displays:

fructose.dat glucose.dat sucrose.dat

What is the output of:

for datafile in *.dat

do

ls *.dat

done



Variables in loops

Suppose that ls initially displays:

fructose.dat glucose.dat sucrose.dat

What is the output of:

for datafile in *.dat

do

ls *.dat

done

ANSWER:
fructose.dat glucose.dat sucrose.dat
fructose.dat glucose.dat sucrose.dat
fructose.dat glucose.dat sucrose.dat



Saving to a file in a loop

In the same directory, what is the effect of this loop?

for sugar in *.dat

do

echo $sugar

cat $sugar > xylose.dat

done

1. Prints fructose.dat, glucose.dat, and sucrose.dat, and the
text from sucrose.dat will be saved to a file called xylose.dat.

2. Prints fructose.dat, glucose.dat, and sucrose.dat, and
the text from all three files would be concatenated and saved to a
file called xylose.dat.

3. Prints fructose.dat, glucose.dat, sucrose.dat, and

xylose.dat, and the text from sucrose.dat will be saved to a file
called xylose.dat.

4. None of the above



Saving to a file in a loop

In the same directory, what is the effect of this loop?

for sugar in *.dat

do

echo $sugar

cat $sugar > xylose.dat

done

1. Prints fructose.dat, glucose.dat, and sucrose.dat, and the
text from sucrose.dat will be saved to a file called xylose.dat.

2. Prints fructose.dat, glucose.dat, and sucrose.dat, and
the text from all three files would be concatenated and saved to a
file called xylose.dat.

3. Prints fructose.dat, glucose.dat, sucrose.dat, and

xylose.dat, and the text from sucrose.dat will be saved to a file
called xylose.dat.

4. None of the above



Scripts

1. Write a shell script that runs a command or series of
commands for a fixed set of files.

2. Run a shell script from the command line.

3. Write a shell script that operates on a set of files defined by
the user on the command line.

4. Create pipelines that include user-written shell scripts.



In the molecules directory, you have a shell script called
script.sh containing the following commands:

head $2 $1

tail $3 $1

While you are in the molecules directory, you type the following
command:
bash script.sh ‘*.pdb’ -1 -1

Which of the following outputs would you expect to see?

1. All of the lines between the first and the last lines of each file
ending in *.pdb in the molecules directory

2. The first and the last line of each file ending in *.pdb in the
molecules directory

3. The first and the last line of each file in the molecules
directory

4. An error because of the quotes around *.pdb



In the molecules directory, you have a shell script called
script.sh containing the following commands:

head $2 $1

tail $3 $1

While you are in the molecules directory, you type the following
command:
bash script.sh ‘*.pdb’ -1 -1

Which of the following outputs would you expect to see?

1. All of the lines between the first and the last lines of each file
ending in *.pdb in the molecules directory

2. The first and the last line of each file ending in *.pdb in the
molecules directory

3. The first and the last line of each file in the molecules
directory

4. An error because of the quotes around *.pdb



Why record commands in the history before running them?

If you run the command:

$ history | tail -5 > recent.sh

he last command in the file is the history command itself, i.e.,
the shell has added history to the command log before actually
running it. In fact, the shell always adds commands to the log
before running them. Why do you think it does this?



Script reading comprehension

Joel’s data directory contains three files: fructose.dat,

glucose.dat, and sucrose.dat. Explain what a script called
example.sh would do when run as bash example.sh *.dat if it
contained the following lines:

# Script 1

echo *.*

# Script 2

for filename in $1 $2 $3

do

cat $filename

done

# Script 3

echo $*.dat



Script reading comprehension

Joel’s data directory contains three files: fructose.dat,

glucose.dat, and sucrose.dat. Explain what a script called
example.sh would do when run as bash example.sh *.dat if it
contained the following lines:

# Script 1

echo *.*

ANSWER:
Prints
example.sh fructose.dat glucose.dat sucrose.dat



Script reading comprehension

Joel’s data directory contains three files: fructose.dat,

glucose.dat, and sucrose.dat. Explain what a script called
example.sh would do when run as bash example.sh *.dat if it
contained the following lines:

# Script 2

for filename in $1 $2 $3

do

cat $filename

done

ANSWER:
Shows contents of fructose.dat, glucose.dat, and sucrose.dat



Script reading comprehension

Joel’s data directory contains three files: fructose.dat,

glucose.dat, and sucrose.dat. Explain what a script called
example.sh would do when run as bash example.sh *.dat if it
contained the following lines:

# Script 3

echo $*.dat

ANSWER:
Prints
fructose.dat glucose.dat sucrose.dat.dat



Finding things

1. Use grep to select lines from text files that match simple
patterns.

2. Use find to find files whose names match simple patterns.

3. Use the output of one command as the command-line
parameters to another command.

4. Explain what is meant by ‘text’ and ‘binary’ files, and why
many common tools don’t handle the latter well.



find pipeline reading comprehension

Write a short explanatory comment for the following shell script:

find . -name ‘*.dat’ -print | wc -l | sort -n



Matching ose.dat but not temp

The -v flag to grep inverts pattern matching, so that only lines
which do not match the pattern are printed. Given that, which of
the following commands will find all files in /data whose names
end in ose.dat (e.g., sucrose.dat or maltose.dat), but do not
contain the word temp?

1. find /data -name ‘*.dat’ -print | grep ose | grep

-v temp

2. find /data -name ose.dat -print | grep -v temp

3. grep -v "temp" $(find /data -name ‘*ose.dat’

-print)

4. None of the above.



Matching ose.dat but not temp

The -v flag to grep inverts pattern matching, so that only lines
which do not match the pattern are printed. Given that, which of
the following commands will find all files in /data whose names
end in ose.dat (e.g., sucrose.dat or maltose.dat), but do not
contain the word temp?

1. find /data -name ‘*.dat’ -print | grep ose | grep

-v temp

2. find /data -name ose.dat -print | grep -v temp

3. grep -v "temp" $(find /data -name ‘*ose.dat’

-print)

4. None of the above.


