The Shell EOAS Software Carpentry Workshop

September 20th, 2016

You need to download some files to follow this lesson. These files are found on the shell lesson website (see etherpad)

- 1. Make a new folder in your Desktop called shell-novice.
- 2. Download shell-novice-data.zip and move the file to this folder.
- 3. If it's not unzipped yet, double-click on it to unzip it. You should end up with a new folder called workshop.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

2. Explain when and why command-line interfaces should be used instead of graphical interfaces.

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

2. Explain when and why command-line interfaces should be used instead of graphical interfaces.

Why use the shell?

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

2. Explain when and why command-line interfaces should be used instead of graphical interfaces.

Why use the shell?

• Connecting to supercomputers

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

2. Explain when and why command-line interfaces should be used instead of graphical interfaces.

Why use the shell?

- Connecting to supercomputers
- Automate repetitive tasks

Learning Goals

1. Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

2. Explain when and why command-line interfaces should be used instead of graphical interfaces.

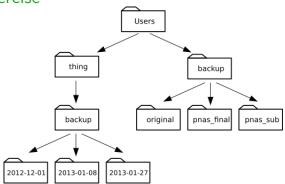
Why use the shell?

- Connecting to supercomputers
- Automate repetitive tasks
- Reproducibility

Files and Directories

Learning Goals

- 1. Explain the similarities and differences between a file and a directory.
- 2. Translate an absolute path into a relative path and vice versa.
- 3. Construct absolute and relative paths that identify specific files and directories.
- 4. Explain the steps in the shell's read-run-print cycle.
- 5. Identify actual command, flags, and filenames in command-line call.
- 6. Demonstrate the use of tab completion, and explain its advantages.

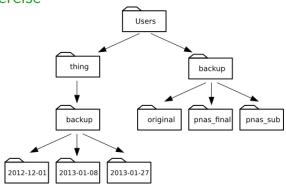

Sample Code

- whoami
- pwd
- /
- ls

- Is -F
- Is -F Desktop
- cd Desktop
- cd ..

- Is -F -a
- Is north-pacificgyre/2012-07-03
- Image: Image

Exercise



If pwd displays /users/backup, and -r tells ls to display things in reverse order, what command will display: pnas_sub/ pnas_final/ original/

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Is pwd
- 2. ls -r -F
- 3. Is -r -F /users/backup
- 4. Either #2 or #3 above, but not #1.

Exercise

If pwd displays /users/backup, and -r tells ls to display things in reverse order, what command will display: pnas_sub/ pnas_final/ original/

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Is pwd
- 2. ls -r -F
- 3. Is -r -F /users/backup
- 4. Either #2 or #3 above, but not #1.

Working with Files and Directories Learning Goals

- 1. Create a directory hierarchy that matches a given diagram.
- 2. Create files in that hierarchy using an editor or by copying and renaming existing files.
- 3. Display the contents of a directory using the command line.
- 4. Delete specified files and/or directories.

Sample Code

- mkdir thesis
- cd thesis
- nano draft.txt
- rm draft.txt
- rm thesis
- rmdir thesis

- rm -r thesis
- mv thesis/draft.txt thesis/quotes.txt
- mv thesis/quotes.txt .
- cp quotes.txt thesis/quotations.txt (=) = ∽a@

Exercise

Jamie is working on a project and she sees that her files arent very well organized:

```
$ ls -F
analyzed/ fructose.dat raw/ sucrose.dat
```

The fructose.dat and sucrose.dat files contain output from her data analysis. What command(s) could you run so that the commands below will produce the output shown?

\$ ls
analyzed raw
\$ ls analyzed
fructose.dat sucrose.dat

Exercise

Jamie is working on a project and she sees that her files arent very well organized:

```
$ ls -F
analyzed/ fructose.dat raw/ sucrose.dat
```

The fructose.dat and sucrose.dat files contain output from her data analysis. What command(s) could you run so that the commands below will produce the output shown?

\$ ls
analyzed raw
\$ ls analyzed
fructose.dat sucrose.dat

Solution

- \$ mv fructose.dat analyzed/fructose.dat
- \$ mv sucrose.dat analyzed/sucrose.dat

Pipes and Filters

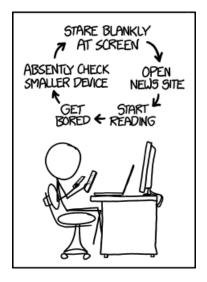
Learning Goals

- 1. Redirect a command's output to a file.
- 2. Process a file instead of keyboard input using redirection.
- 3. Construct command pipelines with two or more stages.
- 4. Explain what usually happens if a program or pipeline isn't given any input to process.
- 5. Explain Unix's "small pieces, loosely joined" philosophy.
- cd molecules
- wc *.pdb
- wc -l
- wc -l *.pdb > lengths.txt
- cat lengths.txt
- sort lengths.txt

- sort lengths.txt > sorted-lengths.txt
- head -1 sorted-lengths.txt
- sort lengths.txt | head -1
- wc -l *.txt
- wc -l *.txt | sort | head -5
- Is *Z.txt

Exercise

In our current directory, we want to find the 3 files which have the least number of lines. Which command listed below would work?


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exercise

In our current directory, we want to find the 3 files which have the least number of lines. Which command listed below would work?

wc -l * > sort -n > head -3
 wc -l * | sort -n | head 1-3
 wc -l * | head -3 | sort -n
 wc -l * | sort -n | head -3

Loops

https://xkcd.com/1411/ < □ > < @ > < ≧ > < ≧ > < ≧ > ⊃ < ♡

Loops

- Write a loop that applies one or more commands separately to each file in a set of files.
- Trace the values taken on by a loop variable during execution of the loop.
- Explain the difference between a variable's name and its value.
- Explain why spaces and some punctuation characters shouldn't be used in file names.
- Demonstrate how to see what commands have recently been executed.
- Re-run recently executed commands without retyping them.

Variables in loops

Suppose that 1s initially displays:

fructose.dat glucose.dat sucrose.dat

```
What is the output of:
for datafile in *.dat
do
ls *.dat
```

done

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Variables in loops

Suppose that 1s initially displays:

fructose.dat glucose.dat sucrose.dat

```
What is the output of:
for datafile in *.dat
do
ls *.dat
done
```

ANSWER:

fructose.dat glucose.dat sucrose.dat fructose.dat glucose.dat sucrose.dat fructose.dat glucose.dat sucrose.dat

Saving to a file in a loop

In the same directory, what is the effect of this loop?

```
for sugar in *.dat
do
  echo $sugar
  cat $sugar > xylose.dat
done
```

- 1. Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.
- 2. Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from all three files would be concatenated and saved to a file called xylose.dat.
- Prints fructose.dat, glucose.dat, sucrose.dat, and xylose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.
- 4. None of the above

Saving to a file in a loop

In the same directory, what is the effect of this loop?

```
for sugar in *.dat
do
  echo $sugar
  cat $sugar > xylose.dat
done
```

- 1. Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.
- 2. Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from all three files would be concatenated and saved to a file called xylose.dat.
- Prints fructose.dat, glucose.dat, sucrose.dat, and xylose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.
- 4. None of the above

Scripts

- 1. Write a shell script that runs a command or series of commands for a fixed set of files.
- 2. Run a shell script from the command line.
- 3. Write a shell script that operates on a set of files defined by the user on the command line.

4. Create pipelines that include user-written shell scripts.

Find the longest file with a given extension

Write a shell script called longest.sh that takes the name of a directory and a filename extension as its parameters, and prints out the name of the file with the most lines in that directory with that extension. For example:

\$ bash longest.sh /tmp/data pdb

would print the name of the .pdb file in /tmp/data that has the most lines.

Joel's data directory contains three files: fructose.dat, glucose.dat, and sucrose.dat. Explain what a script called example.sh would do when run as bash example.sh *.dat if it contained the following lines:

```
# Script 1
echo *.*
# Script 2
for filename in $1 $2 $3
do
cat $filename
done
# Script 3
echo $*.dat
```

Joel's data directory contains three files: fructose.dat, glucose.dat, and sucrose.dat. Explain what a script called example.sh would do when run as bash example.sh *.dat if it contained the following lines:

Script 1
echo *.*
ANSWER:
Prints
example.sh fructose.dat glucose.dat sucrose.dat

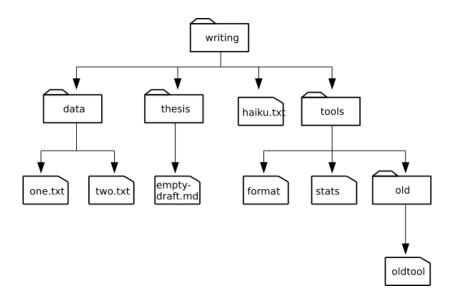
Joel's data directory contains three files: fructose.dat, glucose.dat, and sucrose.dat. Explain what a script called example.sh would do when run as bash example.sh *.dat if it contained the following lines:

```
# Script 2
for filename in $1 $2 $3
do
cat $filename
done
```

ANSWER:

Shows contents of fructose.dat, glucose.dat, and sucrose.dat

Joel's data directory contains three files: fructose.dat, glucose.dat, and sucrose.dat. Explain what a script called example.sh would do when run as bash example.sh *.dat if it contained the following lines:


Script 3
echo \$*.dat
ANSWER:
Prints
fructose.dat glucose.dat sucrose.dat.dat

Finding things

- 1. Use grep to select lines from text files that match simple patterns.
- 2. Use find to find files whose names match simple patterns.

3. Use the output of one command as the command-line parameters to another command.

Directory tree

find pipeline reading comprehension

Write a short explanatory comment for the following shell script:

find . -name *.dat' -print | wc -l | sort -n

Matching ose.dat but not temp

The -v flag to grep inverts pattern matching, so that only lines which do not match the pattern are printed. Given that, which of the following commands will find all files in /data whose names end in ose.dat (e.g., sucrose.dat or maltose.dat), but do not contain the word temp?

1. find /data -name '*.dat' -print | grep ose | grep -v temp

- 2. find /data -name ose.dat -print | grep -v temp
- 3. grep -v "temp" \$(find /data -name '*ose.dat'
 -print)
- 4. None of the above.

Matching ose.dat but not temp

The -v flag to grep inverts pattern matching, so that only lines which do not match the pattern are printed. Given that, which of the following commands will find all files in /data whose names end in ose.dat (e.g., sucrose.dat or maltose.dat), but do not contain the word temp?

1. find /data -name '*.dat' -print | grep ose | grep -v temp

- 2. find /data -name ose.dat -print | grep -v temp
- 3. grep -v "temp" \$(find /data -name '*ose.dat'
 -print)
- 4. None of the above.